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ABSTRACT

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates
NASA’s previous satellite era (1980 – onward) reanalysis system to include additional observations and im-
provements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major
step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations,
MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based
remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assim-
ilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module),
aerosol emissions, and the quality control of ingested observations. We provide initial validation and eval-
uation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne in-
struments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing
MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having
shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave,
clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-
2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and
absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both
studies point out caveats that must be considered when using this new reanalysis product for future studies of
aerosols and their interactions with weather and climate.

1. Introduction

The Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2) is the new mod-
ern satellite era (1980 – onward) atmospheric reanalysis
from the NASA Global Modeling and Assimilation Of-
fice (GMAO, Gelaro et al. 2017). Following the suc-
cess of the original MERRA reanalysis (Rienecker et al.
2008, 2011), the MERRA-2 system incorporates new ob-
servations not available for MERRA and reduces spurious
trends and jumps related to changes in the meteorologi-
cal observing system (McCarty et al. 2016). Numerous
improvements have been made to the MERRA-2 Goddard
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Earth Observing System, Version 5 (GEOS-5) modeling
system (Molod et al. 2012, 2015), including improvements
in the representation of the hydrologic cycle (Takacs et al.
2015; Reichle and Liu 2014), the stratosphere, ozone, and
cryospheric processes (Bosilovich et al. 2016).

In a significant step towards an Integrated Earth Sys-
tems Analysis (IESA), MERRA-2 for the first time in-
cludes analyzed aerosol fields that are radiatively cou-
pled to the atmosphere. To our knowledge, this is the
first multi-decadal reanalysis within which meteorologi-
cal and aerosol observations are jointly assimilated into a
global assimilation system, though other operational fore-
casting centers are actively developing similar capabilities
(e.g. Benedetti et al. 2009; Sekiyama et al. 2010; Lynch
et al. 2016). Previously, the GMAO had performed an
off-line aerosol reanalysis (MERRAero) in which bias-
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corrected MODerate resolution Imaging Spectroradiome-
ter (MODIS) aerosol optical depth (AOD) from Terra and
Aqua was assimilated into an earlier version of the NASA
GEOS-5 model driven by meteorology from MERRA-
1 (Buchard et al. 2015, 2016). In addition to assim-
ilating bias-corrected Collection 5 MODIS AOD as in
MERRAero, MERRA-2 now also includes assimilation
of bias-corrected AOD from the Advanced Very High
Resolution Radiometer (AVHRR) instruments (Heidinger
et al. 2014), AOD retrievals from the Multi-angle Imaging
SpectroRadiometer (MISR) over bright surfaces (Kahn
et al. 2005), and ground-based AErosol RObotic NETwork
(AERONET) direct measurements of AOD (Level 2, Hol-
ben et al. 1998).

Despite their rapid increase in complexity, aerosol mod-
els remain uncertain due to poorly constrained emis-
sions and physical process parameterizations such as hy-
groscopic growth, mixing, and aerosol-cloud interactions
(Textor et al. 2006; Kinne et al. 2006; Benedetti et al.
2009; Schutgens et al. 2010). Similarly, many aerosol ob-
servations such as those from remote sensing platforms,
both satellite- and ground-based, suffer from limited cov-
erage (e.g. due to their orbit and/or cloud contamination),
contextual biases such as ”clear-sky” bias, and biases due
to assumptions made in retrieval algorithms (Zhang and
Reid 2009; Shi et al. 2011; Colarco et al. 2014). Reanal-
yses attempt to take advantage of the best features of both
models and observations to produce four-dimensional,
gridded output that optimally combines the continuity of
a model with real-world observations that may be sparse
and/or irregularly spaced both spatially and temporally
(Rienecker et al. 2011; Schutgens et al. 2010). The an-
alyzed aerosol fields from reanalyses such as MERRA-2
have numerous applications (see Bocquet et al. (2015) and
citations therein). Briefly, these fields can serve as ini-
tial conditions for regional modeling and air quality fore-
casting (Zhang et al. 2012; Giordano et al. 2015; Buchard
et al. 2016), as a tool to investigate aerosol-climate or
aerosol-weather interactions (Bellouin et al. 2013; Reale
et al. 2014), for use as a priori profiles used in satellite
retrievals of other atmospheric constituents (Kessner et al.
2013; Inness et al. 2013), and for optimal network/satellite
sensor design in the context of Observing System Simula-
tion Experiments (OSSEs; Bocquet et al. 2015).

Because standard minimum variance data assimilation
algorithms are designed to minimize random errors under
the assumption of no biases, systematic errors in model
background and observations must be carefully accounted
for, or, to the extent possible, removed prior to the assim-
ilation process (Dee and da Silva 1999; Zhang and Reid
2009; Benedetti et al. 2009). On the observational side,
this can be accomplished by imposing strict quality con-
trol on the observing system used by the reanalysis (Zhang
and Reid 2006). Additionally, it is essential to have a well-
performing and well-tuned prognostic model to minimize

the corrections imposed by the assimilation since large
corrections can cause spurious trends and jumps in the
analyzed fields when the observing system changes over
time (Lynch et al. 2016).

Several important caveats must be understood when
using and evaluating the MERRA-2 aerosol reanalysis
products. First, the relative paucity of (non-assimilated)
aerosol observations make independent validation of the
analyzed AOD a challenge. Second, despite best efforts at
harmonizing the observing system through quality control,
differences in data coverage can and do impact the ana-
lyzed AOD, particularly between the pre- and post-NASA
Earth Observing System (EOS) periods (1980 – 1999
and 2000 – onwards, respectively). Finally, non-analyzed
aerosol properties (e.g. vertical distribution, aerosol speci-
ation, absorption) are not fully-constrained by the assimi-
lation and draw strongly to the assimilating model in most
cases. Nevertheless, despite some deficiencies, previous
studies (e.g. Buchard et al. 2015, 2016), the current study,
and a companion evaluation paper (Buchard et al. 2017)
demonstrate that the aerosol assimilation system does in-
deed show considerable skill in simulating numerous ob-
servable aerosol properties.

The purpose of this study is to describe the MERRA-
2 aerosol data assimilation system, provide initial vali-
dation of the analyzed AOD fields, and suggest applica-
tions of the aerosol products while highlighting both the
model’s skill and deficiencies. In Section 2, we provide
details about the GEOS-5/GOCART model and aerosol
emissions. Section 3 discusses the aerosol assimilation
system and the AOD observing system. We then evalu-
ate the performance of the analyzed AOD fields with re-
spect to the observing system and demonstrate the stabil-
ity of the assimilation system (Section 4a). The impact
of the AOD assimilation is shown by comparisons to a
control simulation driven by MERRA-2 meteorology with
identical aerosol emissions, but without AOD assimilation
(Section 4b). In Section 4c, we present a validation of
MERRA-2 AOD with available, non-assimilated observa-
tions. Finally, we examine the MERRA-2 clear-sky, short-
wave aerosol direct radiative effect (DRE, Section 4d) and
compare to results from other AOD reanalyses. A sum-
mary is presented in Section 5.

In Part II of this study, Buchard et al. (2017) present
an evaluation of the MERRA-2 system with respect to
non-assimilated aerosol properties (e.g. absorption, ver-
tical profile, PM2.5) and case studies during major aerosol
events (e.g. the 1991 Pinatubo eruption). In both this
work and Buchard et al. (2017), we demonstrate impor-
tant aspects of the aerosol products that users must con-
sider. We note that the full MERRA-2 reanalysis dataset
including aerosol fields is currently publicly available on-
line through the Goddard Earth Sciences Data and In-
formation Services Center (GES DISC; http://disc.
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sci.gsfc.nasa.gov/mdisc/) with technical documen-
tation (Randles et al. 2016) and file specifications avail-
able at http://gmao.gsfc.nasa.gov/reanalysis/

MERRA-2/docs/. Individual MERRA-2 data collections
are accessible via their own digital object identifier (doi)
codes. For this study and Buchard et al. (2017) we
use aerosol (Global Modeling and Assimilation Office
2015a,b,c), meteorological (Global Modeling and Assim-
ilation Office 2015d,e), and radiation (Global Modeling
and Assimilation Office 2015f) collections.

2. The MERRA-2 Modeling System

An overview of the MERRA-2 modeling system is
found in Gelaro et al. (2017). Briefly, MERRA-2 is pro-
duced using the GEOS-5 atmospheric model and data as-
similation system version 5.12.4 (Rienecker et al. 2008;
Molod et al. 2015) and the Three-dimensional Variational
Data Analysis (3DVAR) Gridpoint Statistical Interpola-
tion (GSI) meteorological analysis scheme (Wu et al.
2002; Kleist et al. 2009). The GSI uses an incremen-
tal analysis update procedure every 6 hours (Bloom et al.
1996). The discretization of the dynamical core (Lin
2004) is computed on a cubed sphere grid that mitigates
grid-spacing singularities (Putman and Lin 2007). The
GEOS-5 model resolution on the native cubed-sphere grid
is roughly 50 km with 72 hybrid-eta layers from the sur-
face to 0.01 hPa, while most products are saved on a stan-
dard 0.5◦ × 0.625◦ latitude by longitude grid. As noted
previously, the MERRA-2 meteorological observing sys-
tem includes numerous additions that are detailed in Mc-
Carty et al. (2016), and Bosilovich et al. (2016) presents
the validation of the MERRA-2 meteorological, radiation,
ozone, and cryospheric fields. The remainder of this sec-
tion focuses on aspects of the MERRA-2 modeling system
relevant for the aerosol reanalysis.

a. GOCART Aerosol Module

Aerosols in MERRA-2 are simulated with a radiatively
coupled version of the Goddard Chemistry, Aerosol, Ra-
diation, and Transport model (GOCART, Chin et al. 2002;
Colarco et al. 2010). GOCART treats the sources, sinks,
and chemistry of 15 externally mixed aerosol mass mix-
ing ratio tracers: dust (5 non-interacting size bins), sea salt
(5 non-interacting size bins), hydrophobic and hydrophilic
black and organic carbon (BC and OC, respectively; 4
tracers), and sulfate (SO4). Both dust and sea salt have
wind-speed dependent emissions. Primary sulfate and
carbonaceous aerosol species have emissions principally
from fossil fuel combustion, biomass burning, and biofuel
consumption, with additional biogenic sources of organic
carbon. Secondary sources of sulfate include chemical ox-
idation of sulfur dioxide gas (SO2) and di-methyl sulfide

(DMS), and we include a database of volcanic SO2 emis-
sions and injection heights. Note that we use a monthly-
mean climatology of oxidant fields in GOCART. Loss pro-
cesses for all aerosols include dry deposition (including
gravitational settling), large-scale wet removal, and con-
vective scavenging. We note that precipitation-induced
aerosol deposition does not depend on model-generated
precipitation fields. Rather, we use the MERRA-2 cor-
rected precipitation product of Reichle et al. (2017) that
better represents diurnal precipitation changes compared
to observations. Aerosol hygroscopic growth depends on
simulated relative humidity and is considered in computa-
tions of particle fall velocity, deposition velocity, and opti-
cal parameters. Numerous studies have demonstrated the
skill of the GOCART aerosol module in simulating AOD
and other observable aerosol properties (e.g. Colarco et al.
2010; Nowottnick et al. 2010, 2011; Bian et al. 2013).

b. Emissions

Figure 1 shows the EOS-period climatological distribu-
tion of aerosol emissions in MERRA-2 from GOCART.
Dust emissions (Fig. 1a) use a map of potential dust source
locations based on the observed correlation of dust emit-
ting regions with large-scale topographic depressions (Gi-
noux et al. 2001, updated to 0.25◦ resolution). Emissions
of both dust and sea salt (Fig. 1b) are wind-driven for
each size bin, parameterized following Marticorena and
Bergametti (1995) and Gong (2003), respectively. Sea salt
emission strength is modulated with a sea surface tem-
perature (SST) derived correction similar to the work of
Jaeglé et al. (2011). The wind dependent term in the
Gong (2003) sea salt emission parameterization is updated
to depend on friction velocity rather than 10-m velocity
(i.e. u2.41

∗ , where u∗ is the friction velocity). We note
that there are errant emissions of sea salt over the Great
Lakes, Caspian and Black Seas due to an issue in the lake-
masking algorithm during the simulation. While there is
minimal impact of lake emissions on the assimilated AOD
fields, these inland sea salt emissions have consequences
for other aerosol products such as speciated PM2.5 in some
locations (Buchard et al. 2017; Randles et al. 2016).

Sulfate and carbonaceous aerosol emissions (Fig. 1c-f)
derive from both natural and anthropogenic sources. Ta-
ble 1 outlines the emission inventories with additional de-
tails given in Randles et al. (2016). With the exception
of volcanic SO2 emissions, when a given emissions in-
ventory ends the final emission year is persisted in the
model. Natural emissions of SO2 from volcanoes derive
from the AeroCom Phase II project (Diehl et al. 2012,
http://aerocom.met.no/) and cover eruptive and de-
gassing volcanoes on all days from January 1, 1979 to De-
cember 31, 2010. Only a repeating annual cycle of de-
gassing volcanoes is included in MERRA-2 after 2010.
Eruptive volcanoes emit in the upper third of the column

http://disc.sci.gsfc.nasa.gov/mdisc/
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defined by the volcano elevation and the plume-top height;
degassing volcanoes emit at the volcano elevation. With
the exception of aircraft and energy-sector sulfur dioxide,
anthropogenic aerosol sources emit into the lowest model-
layer. Energy-sector emissions of SO2 (EDGARv4.2, Eu-
ropean Comission 2011) are emitted between 100 and 500
m above the surface as in Buchard et al. (2014).

Owing to the intense vertical mixing associated with
fires, we distribute biomass burning emissions uniformly
throughout the planetary boundary layer (PBL) in the grid
box where the fire emission occurs. A diurnal cycle, which
is more prominent in the tropics and gradually weakens in
the higher latitude extratropical temperate zones, is im-
posed online for biomass burning emissions. Importantly,
biomass burning emissions of carbonaceous and sulfate
aerosols in MERRA-2 derive from a variety of invento-
ries over the course of the reanalysis. Figure 2 shows
global and regional timeseries of the carbonaceous aerosol
biomass burning emissions.

From 2010, daily emissions of biomass burning OC,
BC, and SO2 derive from the Quick Fire Emissions
Dataset (QFED) version 2.4-r6 (Darmenov and da Silva
2015). QFED is based on the top-down Fire Radiative
Power (FRP) approach. QFED draws on the cloud correc-
tion method used in the Global Fire Assimilation System
(GFAS, Kaiser et al. 2012), but in addition employs a more
sophisticated treatment of emissions from non-observed
land areas (Darmenov and da Silva 2015). FRP and loca-
tions of fires are obtained from MODIS Level 2 fire and
geolocation products. Level 2 fire products are gridded
at 0.3125◦ × 0.25◦ longitude by latitude horizontal res-
olution and combined to create daily mean emissions at
the same resolution. QFED emissions have been indepen-
dently evaluated in the WRF-Chem model in the context
of the recent NASA SEAC4RS field campaign (Saide et al.
2015) and in the offline version of the GOCART aerosol
model (Petrenko et al. 2012).

Between 1997 and 2009 we employ a scaled version
of the MODIS burned-area based Global Fire Emission
Dataset (GFED) version 3.1 monthly biomass burning
emissions (Randerson et al. 2006; van der Werf et al.
2006). We apply biome-dependent correction factors
based on the period 2003 – 2011 where both GFED v3.1
and QFEDv2.4-r6 were available. Spatially varying frac-
tional contributions of emissions from the tropical forest,
extra-tropical forest, savannah and grassland biomes were
calculated using the QFED climatology. These fractional
contributions were then used to stratify the monthly GFED
emissions by biome. Next, for each biome, the estimated
GFED emissions were used to determine a scaling factor
by means of a linear regression between the globally inte-
grated QFED and GFED emissions. The final product, the
QFED-scaled GFED emission, was computed as the sum
over the biomes of the scaled biome-stratified emissions.

We apply this same type of correction to the RETROv2
monthly mean emissions (Duncan et al. 2003) that cover
1980 – 1996 and are based on AVHRR, Along Track Scan-
ning Radiometer (ATSR), and Total Ozone Mapping Spec-
trometer (TOMS) Aerosol Index (AI). We use the same
aforementioned biome-specific scaling factors, justified by
the similarities between global emissions from RETROv2
and GFEDv3.1. As can be seen in Figure 2, on monthly-
mean timescales, the scaling process results in emissions
that are globally consistent over time.

3. Goddard Aerosol Assimilation System

The MERRA-2 aerosol analysis uses the Goddard
Aerosol Assimilation System (GAAS) that was first de-
tailed in Buchard et al. (2015, 2016). Every 3 hours, this
system assimilates quality-controlled AOD at 550 nm into
the GEOS-5/GOCART modeling system. The prognos-
tic variable in GOCART is the three-dimensional aerosol
mass mixing ratio (xi) for each species i. The forecasted
column-integrated aerosol optical depth τ f is expressed
as:

τ
f = ∑

z,i
xi×bext,i(RH,λ )×δ z (1)

where δ z is the atmospheric layer thickness and
bext,i(RH,λ ) is the species-specific extinction coefficient
at wavelength λ derived from Mie-theory for spherical
particles (Wiscombe 1980) or the T-matrix approach us-
ing the updated optics for non-spherical dust as described
in Meng et al. (2010). The aerosol species i include
the 15 tracers previously described. The extinction co-
efficients (bext,i(RH,λ )) for sulfate and hydrophilic car-
bonaceous aerosol are a function of relative humidity
(RH) following Chin et al. (2002); hygroscopic growth
of sea salt aerosol follows Gerber (1985). Assumed op-
tical properties are primarily from the Optical Properties
of Aerosols and Clouds (OPAC) data set (Hess et al. 1998)
with updated dust optical properties that incorporate non-
sphericity (Meng et al. 2010; Colarco et al. 2014). Supple-
mentary Table 1 provides aerosol optical properties (ex-
tinction coefficient, single scattering albedo, and asymme-
try parameter) by species at 550 nm as a function of rela-
tive humidity; assumed dry sizes for each aerosol species
are also given.

The AOD analysis in MERRA-2 is performed by means
of the so-called analysis splitting method. First, a 2D
analysis of AOD is performed using error covariances de-
rived from innovation data using the maximum-likelihood
method of Dee and da Silva (1999). The AOD analysis
equation is:
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τ
a ≡ Hxa = H(x f +δxa)

= τ
f +δτ

a

= τ
f +HP f HT (HP f HT +R)−1(τo−Hx f )

(2)

where the superscripts a, f , and o indicate the analysis,
forecast (background), and observation, respectively. H is
the linear observation operator that converts aerosol mass
to AOD. The operators P f and R are the background and
observation error covariance matrices, respectively. The
AOD analysis increments δτa are computed using a 2D
version of the Physical-space Statistical Analysis System
(PSAS, Cohn et al. 1998). For algorithm consistency, this
analysis is performed using a natural log-transformed con-
trol variable (η = ln(AOD+ε) where ε = 0.01) as detailed
in Section 3a.

Once the AOD analysis increments are obtained, the
next step is to derive 3D analysis increments for the mix-
ing ratio of each aerosol species, δxa

i . Previous studies
(e.g. Zhang et al. 2008, and references therein) have opted
to simply scale the mixing ratio increments as to promote
consistency with the analyzed AOD at each gridpoint, a
procedure that does not make any use of error covariance
information. Here we seek a relationship relating analy-
sis increments of AOD to analysis increments of aerosol
species mixing ratio that involve the corresponding er-
ror covariance operators. From the mixing ratio analysis
equation implicit in Equation 2, the vertical structure of
δxa is determined by the operator P f HT . Therefore we
seek an operator Q such that

δxa = P f HT Qδτ
a (3)

Imposing the condition Hδxa = δτa leads to

Q = (HP f HT )−1 (4)

Substituting Equation 4 into Equation 3 we arrive at:

δxa = P f HT (HP f HT )−1
δτ

a (5)

Notice that the observation error covariance matrix R
is not involved in Equation 5, and that this expression is
invariant to any scaling of the background error covariance
operator P f .

In principle, solving Equation 5 requires the 3D error
covariance operator, including vertical and horizontal cor-
relations. However, for computational reasons, we solve
this equation for each vertical column separately, as the
main purpose of this step is to project the horizontal AOD
increments into the vertical and across species. As de-
scribed in Buchard et al. (2015) and Section 3b, we em-
ploy a Local Displacement Ensemble (LDE) formulation
to solve Equation 5.

a. Choice of control variable for the 2D AOD Analysis

Since AOD is not a normally distributed variable (e.g.
O’Neill et al. 2000), the 2D analysis in Equation 2 is per-
formed using the natural log-transformed AOD,

η = ln(τ + ε) (6)

as the control variable. The parameter ε = 0.01 is cho-
sen as to render the distribution closest to a Gaussian using
a probability plot technique (Chambers et al. 1983). No-
tice that for small values of τ the log-transformed variable
η is linear in τ and approaches lnτ for large AOD. This
choice of control variable avoids the classical problem of
log-normal distributions for small values of τ and allows
for multiplicative rather than additive corrections for large
τ (Henze et al. 2009; Saide et al. 2013). Notice that AOD
errors τ ′ are related to η ′ errors by

τ
′ ≈ (τ + ε)η ′ (7)

Therefore, even when η errors are Gaussian and flow
independent, AOD errors are a sum of flow dependent
(τη ′) and flow independent (εη ′) components. To pre-
serve linearity, analysis increments δηa are converted
back to δτa before use in Equation 10.

b. Local Displacement Ensembles (LDEs)

In order to evaluate Equation 5 we employ an ensemble
formulation. Let,

X = (x1 x2 ... xE) (8)

where X is a nq×nE matrix (nq is the number of aerosol
concentration tracers times the number of vertical levels
and nE is the number of ensemble perturbations), for a
particular column. From Equation 2 it follows that

Y≡ HX = (Hx1 Hx2 ... HxE)

= (τ1 τ2 ... τE)
(9)

Approximating the background error covariance matrix
by P f ∼XDXT , where D is a diagonal matrix allowing for
the weight of the ensemble perturbations, Equation 5 can
be written as the unbiased linear regression equation:

δxa = XDYT (YDYT )−1
δτ

a (10)

At this point we have made no assumption about the
nature of the ensemble perturbations. MERRA-2 did not
include an ensemble of aerosol forecasts, and this practical
approach was developed to produce ensemble perturba-
tions capable of producing realistic speciation and vertical
structures for the mixing ratio analysis increments. The
underlying assumption of our error covariance modeling
exercise is that aerosol forecast errors are due primarily to
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misplacements of aerosol plumes. Implicit in this assump-
tion is that the AOD analysis (Eq. 2) removes any system-
atic biases. For each gridpoint, ensemble perturbations
are formed by computing the difference of background
aerosol mixing ratios from this central gridpoint and ad-
jacent gridpoints within a given radius (taken as 1,000 km
in MERRA-2). Ensemble perturbations are weighted ac-
cording to exp(−4(τ f − τa)2) so that nearby gridpoints
that better match the AOD analysis receive higher weights.

c. AOD Background Correction and Approximate Analy-
sis Averaging Kernel

The MERRA-2 meteorological analysis is performed
every 6 hours, while the AOD analysis occurs every 3
hours. For efficiency reasons, the overall analysis cycle
in MERRA-2 is controlled by the meteorological assim-
ilation, with two independent AOD analyses performed
within each 6-hour cycle. Consider the 12Z analysis cy-
cle. The AOD analysis is performed at 9Z and 12Z, using
backgrounds that are forecasts from 6Z. The correspond-
ing update of the GEOS-5 aerosol state occurs at 9Z and
12Z. At 12Z the proper background state should be a fore-
cast from 9Z not from 6Z as in the (off-line) AOD analy-
sis. Therefore a background correction is in order to ac-
count for this mismatch in background states. Denoting
the previous AOD analysis and background by τ̂a and τ̂ f ,
respectively, it can be shown that

τ
a = τ̂

a +(I−A)
(
τ

f − τ̂
f ) (11)

where τa and τ f are the proper analysis and forecast at
12Z, and A = KH is the analysis averaging kernel with K
being the usual Kalman gain. For typical satellite swaths,
the operator A evaluates to approximately zero outside the
swath leading to a simple replacement of the background
in those regions; elsewhere, Equation 11 provides a back-
ground correction that depends on the details of the analy-
sis.

In practice, a diagonal approximation for the analysis
averaging kernel A is utilized. In such an approximation,
an additional AOD analysis is performed with all inno-
vations set to 1 while preserving the actual observational
coverage. This averaging kernel field is computed as the
second step of each AOD analysis and is provided as an
additional diagnostic for MERRA-2. Such an algorithm
can be derived as a limiting case of a banded approxima-
tion for the Kalman gain K (derivation not shown).

d. AOD Observing System and Bias Correction

Table 2 summarizes the AOD observing system used
in MERRA-2 while Figure 3 shows the total number of
monthly observations by sensor for the entire reanalysis.
Assimilation of satellite aerosol products requires care-
ful data quality control and bias removal (Zhang and Reid

2006; Lary et al. 2010). MERRA-2 includes assimilation
of bias-corrected AOD derived from AVHRR and MODIS
radiances. Our approach involves cloud screening and ho-
mogenization of the observing system by means of a neu-
ral net retrieval (NNR) that translates cloud-cleared ob-
served radiances into AERONET-calibrated AOD. Addi-
tional details on the NNR algorithm are given in the be-
low, and Supplementary Table 2 provides observational er-
ror standard deviations and Kalman gains (the ratio of the
background error variances to the innovation error vari-
ances) for each sensor used in the PSAS-based analysis of
the log-transform AOD η . For reference, the background
error decorrelation length scale is 140 km, and the back-
ground error standard deviation is 0.45. Homogeneous
and isotropic covariance models are assumed, with spa-
tially constant variances. Error covariance model parame-
ters were estimated using maximum-likelihood method of
Dee and da Silva (1999).

For the pre-EOS period and until 2002, we assimilate
bias-corrected AOD derived from the 25-year record of
AVHRR radiances (Heidinger et al. 2014). We discon-
tinue AVHRR assimilation after 2002 when MODIS Aqua
becomes available; both instruments have afternoon equa-
tor crossing times. Note that AVHRR only provided AOD
retrievals over the oceans. After 2000, we assimilate bias-
corrected AOD derived from MODIS Level 2 radiances,
first from the Terra spacecraft (10:30 local solar time equa-
tor crossing) and after 2002 also from the Aqua spacecraft
(13:30 local solar time equator crossing). In both cases,
we use the same radiances that are provided with oper-
ational MODIS retrievals (Levy et al. 2007). Over land
we use the radiances from the MODIS ”Dark Target” land
algorithm that are not available over bright surfaces. To
include desert regions, we assimilate AOD from MISR
(Kahn et al. 2005) only where the surface albedo is > 0.15.
Observed Level 2 AOD from ground based AERONET
stations (Holben et al. 1998) are also assimilated after
1999. Note that AERONET AOD are not reported at 550
nm; we interpolate to 550 nm using the Angström rela-
tionship and AOD reported at adjacent channels, typically
500 and 675 nm. Because they are not currently available
in Near Real Time (NRT), both MISR and AERONET ob-
servations are excluded from MERRA-2 after 2014; also,
observations from these sensors are not bias corrected.

To derive 10-km resolution MODIS NNR AOD, over-
ocean predictors include Level-2 multi-channel top-of-
the-atmosphere (TOA) reflectances, glint, solar and sensor
angles, cloud fraction (pixels are discarded when cloud
fraction > 70%), and albedo derived using GEOS-5 sur-
face wind speeds. Over land, predictors are the same,
except a climatological albedo is included for pixels with
surface albedo < 0.15. The target of the NNR algorithm
is the log-transformed AERONET AOD. For the AVHRR
NNR AOD, the neural net predictors over ocean are the
AVHRR Pathfinder Atmosphere-Extended (PATMOS-x)
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TOA radiances at 630 and 860 nm (Heidinger et al.
2014), total precipitable water (TPW), ocean albedo (wind
speed), solar and sensor angles, and the climatological
GEOS-5 fractional AOD speciation. For consistency of
the observing system, the target of the AVHRR NNR AOD
is the MODIS NNR. As an additional quality control step,
the on-line adaptive buddy check of Dee et al. (2001) is
used before assimilating AOD data into GEOS-5.

To highlight the consistency imposed by the NNR algo-
rithm on the MERRA-2 aerosol observing system, Figure
4 compares the AVHRR and MODIS Aqua NNR AOD
during a month when both instruments were available.
Saide et al. (2013) independently evaluated the MODIS
NNR AOD against other observational datasets using the
WRF-Chem data assimilation system. Post-processing
techniques such as the NNR were shown to reduce bi-
ases in the assimilation relative to independent AERONET
AOD observations. Additionally, compared to other bias-
corrected MODIS AOD products (e.g. Zhang and Reid
2006), the NASA NNR retrieval produced a more posi-
tive impact on assimilated AOD because its less restrictive
cloud fraction requirement increases data availability.

e. Control Simulation without AOD Assimilation

GEOS-5 can be run in a replay mode whereby a pre-
vious meteorological analysis, generated with an identi-
cal model version, is used to adjust the model’s meteoro-
logical state (winds, temperature, specific humidity) much
like a Chemical Transport Model (CTM). However, un-
like a CTM, in a replay simulation the aerosol transport
dynamics are entirely consistent with the model thermody-
namical state at every time step between analysis updates.
Using the same version of GEOS-5 as MERRA-2, we
perform an EOS-period control simulation (M2REPLAY)
driven by the exact MERRA-2 meteorology but without
the aerosol optical depth assimilation. The aerosol fields
from this control simulation are compared to those from
MERRA-2 to demonstrate the impact of the AOD assim-
ilation on aerosol fields (Section 4 and Buchard et al.
(2017)).

4. Results

Figure 5a shows the timeseries of global, area-weighted
monthly-mean analyzed AOD from MERRA-2. The con-
tribution of different aerosol species to the total AOD is
also shown. For comparison, we show the AOD from
the previous MERRAero reanalysis (Buchard et al. 2015,
2016). Major features of the reanalysis include large in-
creases in global AOD following major volcanic eruptions
in the pre-EOS period and the seasonal cycle of AOD asso-
ciated primarily with dust and biomass burning (carbona-
ceous) aerosols. During the EOS-period, MERRA-2 AOD
is slightly higher than the AOD from MERRAero, due to
higher dust and sea salt AOD that result from changes in

model physics, meteorology, and the inclusion of MISR
AOD assimilation over bright desert regions in MERRA-2
(Randles et al. 2016).

a. AOD Innovation Statistics

Figure 5b shows co-located observed (O) and forecasted
(F) AOD from AVHRR NNR and MODIS Aqua NNR
(separately over land and ocean). Figure 5c shows the
statistical relationship between the co-located assimilated
observations of AOD, the forecasted AOD, and the ana-
lyzed AOD (A) for these sensors. Supplementary Figures
1-3 show similar plots for other sensors in the MERRA-2
aerosol observing system (Table 2). Additionally, Supple-
mentary Figure 4 shows the probability distribution func-
tions of O− F and O− A for each sensor in the AOD
observing system. These comparisons serve as a sanity
check, as it is expected that the analysis should have higher
correlation and lower bias and root mean square error with
respect to the assimilated observations compared to the
forecast. Note that while the analysis is statistically closer
to the observations than the forecast, for any given sensor,
the bias is not completely eliminated due in part to the in-
fluence of other sensors on the analyzed AOD. During the
EOS-period, analysis statistics are also slightly better over
ocean compared to land, due to a combination of observ-
ability (fewer observations over land versus ocean) and
a prevalence of aerosol source regions over land (greater
aerosol type variability) (Gelaro et al. 2017; Randles et al.
2016).

Generally, forecasted AOD departs only slightly from
co-located assimilated observations (Fig. 5b). The excep-
tion to this is after major volcanic eruptions (El Chichón
in 1982 and Pinatubo in 1991) when the MERRA-2 fore-
casted AOD is significantly higher than the assimilated
AVHRR observations. Buchard et al. (2017) describes
the reasons for this in more detail for the Pinatubo erup-
tion. Briefly, MERRA-2 first overestimates the volcanic
plume height, injecting sulfur dioxide gas higher into the
stratosphere than more recently available data suggest.
This higher injection height has implications for transport
and lifetime of the subsequently formed stratospheric sul-
fate aerosol, particularly since the assimilation does not
constrain the precursor sulfur dioxide gas. Next, GO-
CART assumes all sulfate aerosols share the same (dry)
size distribution when calculating aerosol optical proper-
ties. The sulfate aerosol size in GOCART is more appro-
priate for tropospheric aerosols rather than the particles
that formed in the stratosphere after the Pinatubo eruption
(Aquila et al. 2014). Smaller aerosol particles are more ef-
ficient at scattering light, and the underestimate in strato-
spheric aerosol particle size contributes to an overestimate
of stratospheric and total AOD in the forecast.
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b. Impact of the AOD Analysis

Figure 6 compares, for each of the satellite sensors
during the EOS-period, the 3-hour forecasted and ana-
lyzed climatological AOD. We also show the climatolog-
ical AOD from the replay control simulation where we
have sampled M2REPLAY using the day-time Terra and
Aqua orbits. In most regions, the analyzed MERRA-2
AOD resembles the forecasted AOD. Exceptions appear,
for example, over China and northern Africa. Both the
MERRA-2 forecasted AOD (which retains the influence
of the previous assimilation step) and the analyzed AOD
fields show differences relative to the control experiment.
Without AOD assimilation, M2REPLAY generally has
higher overall AOD, particularly over the Southern Ocean
and North Atlantic, over and downwind of China, and over
the Sahara.

Figure 7 shows observed, forecasted, and analyzed
AOD from AVHRR for all of MERRA-2 in which we
assimilate observations from this sensor and for the two
years during and subsequent to the Pinatubo eruption.
Here we see, as in Figure 5b and 5c, that the 3-hour
forecast overestimates the observed AOD after Pinatubo.
However, the analysis resembles the observations after
Pinatubo. This implies a negative aerosol increment. Im-
portantly, when a negative AOD increment is applied, it
impacts all aerosol species, proportionally reducing their
masses to optimally reproduce observed AOD. This can
be seen in the timeseries of AOD in Figure 5a, where dust,
carbonaceous, and sea salt AOD is reduced immediately
after the Pinatubo eruption. This speciated AOD reduc-
tion is an artifact of applying relatively large, negative
AOD increments in MERRA-2. We note that both two-
dimensional total AOD increments and three-dimensional
speciated aerosol mass mixing ratio increments are avail-
able as part of the MERRA-2 dataset (Global Model-
ing and Assimilation Office 2015g,h). Ongoing work is
focused on improved forward modeling of large strato-
spheric volcanic eruptions to mitigate the need for large,
negative AOD analysis increments (i.e. δτa in Eq. 2).

c. Independent Verification

Here we assess the performance of the analyzed AOD
fields by comparing them with other, independent (non-
assimilated) observations from both surface-based and air-
craft sensors. In order to examine the impact of the AOD
analysis, we perform these comparisons for the analyzed
fields and, where available, AOD fields from the con-
trol experiment. We reiterate that it is challenging to in-
dependently validate the MERRA-2 aerosol products be-
cause most of the global, readily available spaceborne and
ground-based observations are included in the assimila-
tion. A more in-depth validation of the aerosol analy-
sis, including other aerosol properties (vertical distribu-
tion, absorption, surface concentration) and case studies

of aerosol events is presented in Buchard et al. (2017). In
this work, we focus on validation of the total column AOD
only, since this is the aerosol property directly constrained
in the assimilation.

1) COMPARISONS WITH AERONET

The AErosol RObotic NETwork (AERONET; http:
//aeronet.gsfc.nasa.gov/new_web/) is a federated
global network of ground-based, automatic sunphotome-
ters that measure direct sun and sky radiances at sev-
eral wavelengths (Holben et al. 1998). AOD is obtained
from direct sun measurements with an accuracy to within
±0.015. In the assimilation, we use cloud-screened Level
2.0 data (quality assured, Smirnov et al. 2000). Though
AERONET is assimilated in MERRA-2 after 1999 (Table
2) and cannot be considered for independent verification,
a subset of sites (∼40) have un-assimilated Level 2.0 data
going back to 1993. It is instructive to examine the per-
formance of the MERRA-2 analyzed AOD fields relative
to observations at these sites. Additionally, comparing the
performance of MERRA-2 AOD to M2REPLAY shows
the impact of the analysis at these stations.

Table 3 compares simulated AOD to observations from
long-term AERONET stations (>7 years of data), some
of which also had some portion of their observations oc-
curring prior to 1999. Statistics are computed based on
hourly observations and co-located model output, and are
provided both for each station’s full EOS-period record
(2000 – 2014), and, in parenthesis, just that part of the
data record available prior to 1999. For each station,
the dominant aerosol source type is indicated. For most
all stations, comparing MERRA-2 to M2REPLAY reveals
that the assimilation increases correlation while reducing
root mean square error of the differences (RMSE) with
the observed hourly AOD. Notably, even without assim-
ilation, M2REPLAY shows considerable skill in simulat-
ing AOD at biomass burning aerosol dominated stations
since emissions are observationally-based (Section 2b).
For MERRA-2, comparing statistics for the period prior
to 1999 and the EOS-period (within and without parenthe-
sis, respectively), we see improved statistics once overland
observations from AERONET and other EOS-sensors are
incorporated into the assimilation.

Figure 8 shows the timeseries of monthly mean and
standard deviation of observed AOD at three long-term
AERONET sites representative of polluted continental
(GSFC), biomass burning (Mongu), and dust-influenced
(Capo Verde) conditions. Additional stations from Table
3 are shown in the Supplement. For each site, we also
show the 30-day (centered) running mean and standard
deviation of AOD from MERRA-2 and M2REPLAY. The
two simulations were co-located in space and time with
the corresponding hourly Level 2 AERONET observations

http://aeronet.gsfc.nasa.gov/new_web/
http://aeronet.gsfc.nasa.gov/new_web/
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prior to smoothing, and statistics for all the hourly co-
locations are given on each panel. MERRA-2 shows im-
proved correlation and reduced bias relative to AERONET
AOD compared to the control run. Statistics improve
the least for Mongu, where M2REPLAY shows consid-
erable skill in capturing the monthly mean AOD without
aerosol assimilation (due to the use of observationally-
based biomass burning emissions inventories described in
Section 2b). In all cases, the variability in observed AOD
is better captured by the assimilation (MERRA-2) com-
pared to the control run (M2REPLAY).

Prior to 1999, MERRA-2 assimilates AOD from
AVHRR over ocean only, and land-based observations
from AERONET are assimilated starting in 1999. EOS-
era satellite observations are assimilated after 2000, pro-
viding satellite observations of AOD over both land and
ocean. We cannot disentangle the influence of AERONET
observations alone on the AOD assimilation. However,
we do see that the EOS-era observations generally better
simulate AOD variability (standard deviation) compared
to the impact of AVHRR ocean observations only prior to
1999. For example, prior to 1999, MERRA-2 does not
generally have a standard deviation comparable to the ob-
servations in summer at GSFC (Fig. 8a), a location with
AOD dominated by anthropogenic sources that have only
annually varying emissions (Table 1).

The timeseries of observed and simulated AOD at
Mongu (Fig. 8b) illustrates the combined impact of chang-
ing biomass burning emissions and the observing system
on the analyzed AOD. Recall that prior to 1997, MERRA-
2 uses emissions based on a scaled-version RETROv2
(Duncan et al. 2003) and does not include assimilated ob-
servations over land. After 1997, emissions are based on
scaled-versions of GFED and QFED, both of which derive
from MODIS data products. There is a clear improvement
both in the monthly-mean AOD and standard deviation of
AOD after 1997 when emissions change. Further improve-
ment is seen during the EOS-period when many more
observations over land become available. We note that
the change from monthly-mean to daily biomass burning
emissions (before and after 2010, respectively) has only a
minor impact on the multi-year statistical agreement be-
tween MERRA-2 and AERONET (not shown); however,
the biomass burning emissions frequency is likely more
important in the context of individual events. We con-
clude that, importantly, timeseries analysis of MERRA-2
AOD is sensitive both to a changing observing system and
changes and/or trends imposed by emission inventories.

2) COMPARISONS WITH MARITIME NETWORKS

We use historical shipborne sun photometer data to val-
idate MERRA-2 AOD prior to the EOS-period. These
data, summarized in Smirnov et al. (2002), Sakerin and
Kabanov (2002) and partially used by Liu et al. (2004) for

AVHRR validation, span the timeframe 1982 – 1996 and
cover the cruises shown in Figure 9a. We compare the
co-sampled MERRA-2 AOD at the observed wavelength
closest to 550 nm (range 500 – 570 nm depending on the
cruise). Observations are reported as morning or afternoon
averages with an observed accuracy of± 0.02. The model
is sampled every three hours for a given observation date
and then averaged 8 am – 12 pm or 12 pm – 4 pm local
time for purposes of comparison. Figure 9b shows a scat-
ter plot of the AOD comparison, with statistics reported by
year. The correlation between MERRA-2 and the obser-
vations is best near dust-influenced regions (e.g. the Red
Sea, Mediterranean, and near North Africa). In the re-
mote Pacific, MERRA-2 AOD is not well-correlated with
the observations, but the bias is low. Observations from a
single cruise indicate that MERRA-2 AOD is biased high
after the Pinatubo eruption.

During the EOS-period, the Maritime Aerosol Network
(MAN; http://aeronet.gsfc.nasa.gov/new_web/
man_data.html) employs Microtops II sun photome-
ters aboard ships of opportunity to measure AOD. The
photometers used in MAN are calibrated to have an es-
timated uncertainty in AOD of ± 0.02 (Smirnov et al.
2009). MAN cruises cover the period 2004 – present
(Fig. 10a). These observations have not been assimilated
in the MERRA-2 GAAS and therefore serve as indepen-
dent validation of the assimilated AOD product. Figure
10b compares all available MAN observations with co-
located MERRA-2 AOD. A high degree of correlation is
found between the MERRA-2 and MAN observations, and
the bias is generally low, though MERRA-2 does tend to
slightly overestimate the lowest observed AOD. The im-
pact of AOD assimilation is apparent in Figure 10c, where
the M2REPLAY control simulation has lower correlation
and higher bias relative to the MAN observations than
MERRA-2.

3) COMPARISONS WITH AIRCRAFT OBSERVATIONS

The NASA Langley Research Center (LaRC) DIfferen-
tial Absorption Lidar (DIAL) system implements the High
Spectral Resolution Lidar (HSRL) technique to retrieve
aerosol extinction and AOD at 532 nm (Hair et al. 2008).
The instrument also retrieves aerosol backscatter coeffi-
cients and is sensitive to polarization at three wavelengths
(355, 532, and 1064 nm), measuring both above and be-
low the aircraft (i.e. zenith and nadir). AOD are derived
from nadir aerosol extinction profiles when the aircraft is
above 6 km; a 1 km region below the aircraft is omitted
from the AOD column as the laser and telescope are not
fully aligned in this region.

During the NASA Studies of Emissions and Atmo-
spheric Composition, Clouds, and Climate Coupling by
Regional Surveys (SEAC4RS) campaign from August
to September 2013 (http://www.nasa.gov/mission_

http://aeronet.gsfc.nasa.gov/new_web/man_data.html
http://aeronet.gsfc.nasa.gov/new_web/man_data.html
http://www.nasa.gov/mission_pages/seac4rs
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pages/seac4rs), the DIAL/HSRL system aboard the
NASA DC8 aircraft measured AOD over a large portion
of the southeastern and western continental United States,
including several smoke plumes from large fires (e.g. the
Rim Fire). We sample MERRA-2 along the aircraft trajec-
tories for the entire SEAC4RS campaign and calculate the
AOD over the same portion of the column as the observa-
tions. Figure 11a shows the performance of the MERRA-2
AOD relative to this independent observation. There is a
high degree of correlation and low bias between MERRA-
2 and AOD measured by the DIAL/HSRL system. As
with the MAN comparison (Fig. 10), there is a high and
low bias for low and high AOD, respectively. Figure 11b
shows the same comparison for the control run simulation
(M2REPLAY) and again demonstrates the positive impact
of AOD assimilation. While we have shown the AOD
comparison for the entire SEAC4RS campaign, Buchard
et al. (2017) uses DIAL/HSRL observations to validate
vertical profiles of aerosol optical properties for several
aircraft campaigns and during the Yosemite Rim Fire.

The Spectrometer for Sky-Scanning, Sun-Tracking At-
mospheric Research (4STAR) measured the AOD above
the DC8 during the SEAC4RS campaign. 4STAR com-
bines airborne sun tracking and sky scanning with spec-
troscopy to cover the full 350 to 1700 nm spectral range
(Dunagan et al. 2013). The 4STAR AOD is computed
from the observed intensity of the direct solar beam based
on the Beer-Lambert Law. Shinozuka et al. (2013) give
details on AOD data acquisition, screening, reduction,
calibration and uncertainty analysis. During SEAC4RS,
where ambient temperature varied more widely than in
4STAR’s previous deployments, the measurements exhib-
ited a systematic high bias in AOD. An empirical correc-
tion determined from field data and lab tests has been ap-
plied to the AOD such that, where the magnitude of the
correction is comparable to the AOD itself or where the
4STAR temperature is below -15◦C, AOD are flagged and
not reported. This quality screening improves the accu-
racy of reported AOD, but also disproportionally elimi-
nates AODs under conditions of low aerosol burden or
high altitude. Comparisons with ground sun photometers
before and after each flight allowed for characterization of
4STAR’s optical throughput, enabling an estimate of mea-
surement uncertainty of ± 0.02 for SEAC4RS.

Figure 12 compares probability distribution functions
(PDFs) of co-located simulated AOD to 4STAR for both
MERRA-2 and M2REPLAY for the entire SEAC4RS
campaign. Here, we have sampled the simulations along
the aircraft track, and AOD is calculated for only the por-
tion of the atmospheric column above the aircraft. Note
that differences between observed and simulated AOD
at the lowest tail of the PDFs, which are representa-
tive of cleaner background air remote from major aerosol
sources, are generally within the reported instrumental un-
certainty. Because AOD here is not representative of the

full atmospheric column, simulated AOD is sensitive to
the vertical distribution of aerosol, which is not directly
constrained in the assimilation. The assimilation best
characterizes the mid-range of AODs (∼0.13-0.21) com-
pared to the control run. However, it underestimates the
highest observed AODs (associated with biomass burning
events; not shown); without assimilation (M2REPLAY),
the model overestimates these high-AOD occurrences.

d. Clear-sky aerosol direct radiative effects

Atmospheric aerosols, both natural and anthropogenic,
impact climate through scattering and absorption of radia-
tion (direct radiative effect, DRE), modification of cloud
microphysics (indirect effects), and thermodynamic ef-
fects (semi-direct effect of aerosol absorption). Estimating
the direct radiative effect requires knowledge of the three
dimensional distribution of aerosols and their optical prop-
erties. While satellites can measure AOD, a key aerosol
property for determination of the DRE, cloud contamina-
tion and satellite viewing geometries can combine to pro-
duce spatial and temporal sampling biases. Furthermore,
global observations of aerosol absorption optical depth
(AAOD) and vertical distributions are currently even more
sparsely available. Though they simulate the full aerosol
life cycle without data gaps, global aerosol models are
complex and produce varying estimates of DRE (Kinne
et al. 2006; Schulz et al. 2006; Yu et al. 2006). In the
MERRA-2 aerosol reanalysis, however, AOD is continu-
ously available for over two decades and is optimally con-
strained by quality controlled satellite- and ground-based
observations.

Before examining the DRE from MERRA-2, we first
compare the global average AOD and AAOD to other
models and reanalyses. Several forecasting centers are
currently producing global aerosol reanalyses. For ex-
ample, the Naval Research Laboratory (NRL) has pro-
duced an 11-year offline aerosol reanalysis at 1◦ reso-
lution using the Navy Aerosol Analysis and Prediction
System (NAAPS) to assimilate quality-assured and con-
trolled MODIS Collection 5 and MISR AOD (Lynch et al.
2016). As part of the Monitoring Atmospheric Composi-
tion and Climate (MACC) project, the European Center
for Medium-range Weather Forecast (ECMWF) has as-
similated MODIS AOD from 2003 to the present (Mor-
crette et al. 2009; Benedetti et al. 2009).

Table 5 and Gelaro et al. (2017, their Fig. 14) com-
pare the global-average AOD and AAOD from MERRA-2
to recent reanalysis estimates, including our own MER-
RAero offline aerosol reanalysis. Where such informa-
tion is available, results are also partitioned by species and
identified as either fine or coarse mode (see table foot-
notes for details). Also shown are the multi-model aver-
age results from Phase I of the AeroCom intercompari-
son project (Kinne et al. 2006), as well as both model and

http://www.nasa.gov/mission_pages/seac4rs
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observational estimates from Yu et al. (2006). Yu et al.
(2006) attempt to account for satellite clear-sky biases by
combining MODIS and MISR observations with the GO-
CART aerosol model as part of their observational esti-
mate. Compared to MERRAero, MERRA-2 has slightly
higher global average AOD due to increased contributions
from dust (related to the assimilation of MISR AOD over
bright surfaces) and sea salt (related to changes in model
physics). MERRA-2 and NAAPS have similar global
average AOD both for fine and coarse model aerosol.
Global aerosol model estimates of AOD (AeroCom and
Yu Model) are lower than MERRA-2, and the observa-
tional estimate (Yu Obs) is higher. The MACC reanalysis
(Bellouin et al. 2013) AOD is close to the MODIS-only
AOD of 0.188 (Yu et al. 2006). MACC also has more dust
and sea salt AOD compared to MERRA-2, especially over
the ocean (see Supplementary Table 3).

Both AOD and AAOD influence the direct impact of
aerosols on the radiative energy balance of the planet.
Recall that AAOD is only indirectly constrained by as-
similating AOD. MERRA-2 AAOD is slightly lower than
our previous aerosol reanalysis, but agrees well with the
AAOD from Bellouin et al. (2013, note that the AAOD is
not the MACC-native AAOD but is derived in this study).
While the column-integrated AAOD from MERRA-2 gen-
erally agrees well with OMI observations in the near-
UV (especially near source regions; Buchard et al. 2016),
MERRA-2 overestimates absorption in regions remote
from aerosol sources (e.g. the free troposphere) due to ex-
cessive amounts of black carbon aerosol in these regions
(see Randles et al. 2016, for comparisons of MERRA-2 to
black carbon vertical distributions from aircraft observa-
tions).

Recall that the DRE is defined as the shortwave flux dif-
ference in W m−2 between clear-sky (i.e. no clouds) and
clear, clean-sky conditions (i.e. no aerosols or clouds). In
the absence of clouds, the radiative effect of aerosols is
less sensitive to the vertical distribution of aerosol absorp-
tion, although it remains sensitive to absorbing aerosols
over bright surfaces (e.g. snow and deserts, Chýlek and
Coakley 1974). As long-term aerosol reanalyses such as
MERRA-2 continue to evolve and improve, they can po-
tentially reduce uncertainty in the DRE, particularly once
better observational constraints on aerosol absorption and
vertical distribution become available and are included in
the assimilation. For comparison (Fig. 13), we consider
DRE estimates derived from the MACC project (Bellouin
et al. 2013). DRE estimates based on observations and cal-
culated based on the results of four global aerosol models
are also considered (Yu et al. 2006).

Much of the uncertainty in the DRE reported by the In-
tergovernmental Panel on Climate Change (IPCC) arises
from differences between estimates from global mod-
els and satellite-based estimates (Myhre 2009). Figure
13 shows the time series of clear-sky shortwave DRE

from MERRA-2 and MERRAero separately over land and
ocean. We also indicate DRE estimates derived from the
MACC reanalysis (Bellouin et al. 2013, yellow shading)
and Yu et al. (2006, both model and observational esti-
mates, red and grey shading, respectively). Top-of-the at-
mosphere (TOA), surface (SFC), and atmospheric (ATM)
DRE is shown, where TOA = SFC + ATM. Supplemen-
tary Table 3 presents the results of Figure 13 in tabular
form and also includes a comparison of AOD, AAOD,
and DRE efficiency (DRE/AOD) separately over land and
ocean. Differences in the DRE efficiency highlight where
model aerosol assumptions (e.g. absorption, size distribu-
tion) and environmental properties (e.g. surface albedo)
contribute to discrepancies between DRE estimates from
reanalyses. The DRE efficiency for MERRA-2 is within
about 20% of the observational estimate (Yu et al. 2006).

As the global aerosol observing system continues to
grow and provide additional information on aerosol ab-
sorption, size, type, and vertical distribution that can be as-
similated, reanalysis estimates of aerosol radiative-climate
effects should become more consistent with satellite-
derived effects and thus reduce DRE uncertainty. For ex-
ample, the GMAO is working to incorporate aerosol verti-
cal distribution information from the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO)
into a future aerosol reanalysis. Unlike satellite esti-
mates alone, reanalyses like MERRA-2 can provide de-
tailed information on how the anthropogenic component
of aerosols, and thus radiative forcing, has changed dur-
ing the modern satellite era. This should lead to reduced
uncertainty in assessing the human impact on climate.

5. Summary and Conclusions

This paper describes the NASA GMAO’s MERRA-2
aerosol reanalysis, the first satellite era (1980 – onward)
reanalysis in which both meteorological and aerosol ob-
servations are jointly assimilated. We use the GOCART
aerosol module coupled to the GEOS-5 Data Assimila-
tion System (DAS) to include radiatively-active prognos-
tic aerosol mass tracers and the Goddard Aerosol Assim-
ilation System (GAAS) to assimilate bias-corrected AOD
from AVHRR and MODIS (Terra and Aqua), MISR AOD
over desert regions, and ground-based AERONET AOD.
Publicly available gridded output is available at hourly,
three-hourly, and monthly timescales for both column-
integrated and three-dimensionally resolved aerosol mass,
optical properties, and other aerosol diagnostics. These
data are available through the GES DISC at http://
disc.sci.gsfc.nasa.gov/mdisc/.

In this paper we have provided information about the
MERRA-2 Data Assimilation System relevant for the
aerosol assimilation, including a description of the aerosol
module and emissions inventories. We describe both the
process of AOD assimilation and the necessary prior data

http://disc.sci.gsfc.nasa.gov/mdisc/
http://disc.sci.gsfc.nasa.gov/mdisc/
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quality control. In MERRA-2 the only property directly
constrained by the assimilation is the AOD. Other aerosol
properties such as aerosol speciation and vertical distribu-
tion, all of which are available, are indirectly constrained
by the assimilation. Here, we focus our evaluation and
validation efforts on the AOD only. Our companion study
(Buchard et al. 2017) presents an evaluation and validation
of aerosol properties that are indirectly impacted by the
MERRA-2 AOD assimilation. In both studies, to examine
the overall impact of the AOD assimilation, we perform
an EOS-period control simulation in replay mode where
the same version of the model is driven by MERRA-2 an-
alyzed meteorology, but without AOD assimilation.

We begin by assessing innovation statistics as a sanity
check, as we expect analyzed AOD fields to better match
assimilated AOD than the forecast AOD. As shown by
Lynch et al. (2016), a well-performing forward model is as
equally important as the AOD assimilation process itself.
During the EOS-period, a period for which the GEOS-
5/GOCART system has been extensively evaluated and
refined, we show that in most regions, there is little dif-
ference between the 3-hour forecast and analyzed AOD
fields. Thus, on average, the assimilation process needs to
apply relatively small AOD analysis increments (δτa) to
agree with the assimilated observations. This is an indica-
tion that the model is relatively unbiased with respect to
the AOD measurements it assimilates.

The forward modeling system in MERRA-2, however,
has not been optimized to deal with the larger, strato-
spheric aerosol produced from SO2 oxidation after ma-
jor volcanic eruptions. We are currently working on im-
proving the representation of stratospheric SO2 injection
by past volcanoes, in terms of plume height and injection
magnitude by incorporating data from Carn et al. (2016).
This dataset combines UV measurements from TOMS,
OMI, and OMPS with infrared data from TOVS, AIRS
and IASI to produce a database of volcanic SO2 injec-
tion amount and plume top height from 1979 to present.
Future inclusion of a separate volcanic aerosol tracer or
aerosol microphysics will improve the representation of
stratospheric aerosol size. Improvements in the forecasted
AOD after major eruptions will mitigate the need for large,
negative AOD increments, and we expect less of an artifi-
cial impact on the timeseries of AOD (and DRE) for indi-
vidual aerosol species.

Next we focus on evaluating and validating the
MERRA-2 analyzed AOD fields. First, we compare
hourly AOD to AERONET observations, which were not
assimilated until 1999. We find that at all stations, the as-
similated AOD better matches the observations than the
control simulation, not only in terms of correlation but
also in terms of more realistic variability and reduced root
mean squared error. The assimilation produces the least
impact for biomass burning regions, where emissions dur-
ing the EOS-period have been well-tuned to MODIS data

products. Comparisons to AERONET also reveal that both
changes in the aerosol observing system between the pre-
EOS and EOS periods and changes in prescribed aerosol
emissions inventories (especially for biomass burning) im-
pact MERRA-2 AOD.

Shipborne sunphotometer data is used for independent
validation of MERRA-2 AOD both for the pre-EOS and
EOS periods. Compared to historic AOD cruise measure-
ments, we find that MERRA-2 correlates reasonably well
with the observations reported as morning or afternoon av-
erages. The bias between analyzed and observed AOD is
generally within the instrumental uncertainty. In part be-
cause they are recorded with time precision that allows
for unambiguous sampling of the model, present-day Mar-
itime Aerosol Network observations show even greater
agreement with analyzed AOD fields. Furthermore, there
is a clear, positive impact of the assimilation on the AOD
as compared to the control simulation.

We conclude our model AOD validation using aircraft
observations taken during the recent NASA SEAC4RS
campaign over the southeastern and western United States
in August-September, 2013. First, we compare to AOD
retrievals from the DIAL/HSRL instrument. Considering
that the model is spatially coarse compared to the high-
resolution observations, both the MERRA-2 AOD and
AOD from the control simulation well-simulate observed
AOD, with improvements seen for the analyzed AOD
fields. Similarly, comparisons between these two simu-
lations and the 4STAR instrument, which measured AOD
above the aircraft during SEAC4RS, reveal that the AOD
assimilation tends to increase the lowest-simulated and
mid-range AOD while decreasing the highest-simulated
AOD during the campaign. Overall, the resulting
campaign-wide AOD distribution from MERRA-2 better
matches the observed 4STAR distribution. Notably, this
improved agreement occurs despite the fact that the above-
aircraft AOD is a function of the aerosol vertical distribu-
tion, an aerosol property only indirectly impacted by the
assimilation (Buchard et al. 2017).

Finally, we compare MERRA-2 AOD, AAOD, and
the clear-sky shortwave Direct Radiative Effect (DRE)
amongst recent aerosol reanalyses, models, and obser-
vations. MERRA-2 global average AOD is higher than
the model-simulated AOD, but AAOD from MERRA-2 is
lower than observation studies suggest. Estimates of clear-
sky DRE from MERRA-2 are closer to observationally-
based estimates than models, but examination of the DRE
efficiency reveals a potential need to revise aerosol op-
tical property assumptions (e.g. absorption, size distri-
bution). We caution that in all-sky (cloudy) conditions,
the DRE of aerosols from MERRA-2 will be highly sen-
sitive to the vertical distribution of aerosol absorption
(Chýlek and Coakley 1974). While the overall MERRA-
2 vertical profile of aerosol extinction is reasonable com-
pared to observations (Buchard et al. 2016), black carbon
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aerosol and its associated absorption are overestimated at
higher altitudes, particularly away from source regions
(e.g. compared to HIPPO observations from Schwarz et al.
(2013) as shown in Randles et al. 2016). Furthermore, an-
thropogenic aerosol pre-industrial to present-day radiative
forcing (RF), which we do not consider in this study, de-
pends both on aerosol distributions and aerosol speciation,
the latter of which is strongly controlled by lower bound-
ary conditions (i.e. emissions inventories) rather than the
assimilation of AOD. Both the AOD and DRE are im-
pacted by a changing observing system and, in some cases,
changing emissions inventories. Nevertheless, long-term
aerosol reanalyses like MERRA-2 have the potential to re-
duce uncertainty in estimates of aerosol-radiation effects,
particularly as they are further constrained by additional
aerosol observations (e.g. vertical distribution, absorp-
tion, multi-wavelength information to distinguish aerosol
types).

As demonstrated in here, in Randles et al. (2016),
and in Buchard et al. (2017), in many cases MERRA-
2 shows considerable skill in simulating numerous ob-
servable aerosol properties. However, we emphasize that
only the 550 nm AOD is constrained in the reanalysis,
and it is only constrained when and where data are avail-
able. Prior to the EOS-period, observations were primarily
from AVHRR over ocean only. While data volume, es-
pecially over land, increased markedly after 2000, AOD
observations are only available for the sunlit portion of
the globe, depend strongly on satellite viewing geometry,
and are subject to meteorological conditions (e.g. cloudi-
ness). Without available data to assimilate, the assimila-
tion naturally draws toward the forecast from the GEOS-
5/GOCART model. Care must always be taken when con-
sidering aerosol products indirectly constrained by the as-
similation, and trends in reanalysis aerosol properties in-
cluding AOD must be considered within the context of a
changing observing system and a forecast influenced by
prescribed aerosol emissions inventories.

The MERRA-2 aerosol reanalysis is a major step to-
wards an Integrated Earth Systems Analysis that will
one day incorporate atmospheric, constituent, oceanic,
and land observations to provide a scientific, internally-
consistent gridded description of the state of the Earth sys-
tem and how it is evolving over the satellite era. Future
work on the aerosol analysis will focus on improving the
aerosol forecast in order to minimize the needed analysis
increments. We are also actively working on incorporat-
ing observations from additional space- and ground-based
sensors from an ever-expanding aerosol observation net-
work, particularly observations that provide additional in-
fomation content (e.g. multi-spectral measurements and
vertical structure from space-based lidar).
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TABLE 1. Aerosol and Precursor Emissions in MERRA-2a

Aerosol Type Source Descriptionb,c

Dust Wind-driven Static topographic depression source map
(0.3125◦ × 0.25◦, Ginoux et al. 2001)

Sea Salt Wind-driven see Section 2b
Volcanic SO2 AeroCom Phase II (HCA0 v2; Diehl et al. 2012) Daily degassing and

eruptive volcanos (1980 – 2010)
Biogenic terpene Guenther et al. (1995) Monthly-mean climatology (2◦ × 2.5◦)
di-methyl sulfide (DMS) Lana et al. (2011) Monthly-mean climatology (1◦ × 1◦)
and methanesulfonic acid (MSA)

Biomass burningd scaled RETROv2 (Duncan et al. 2003) Monthly-mean varying (1980 – 1996; 0.3125◦ × 0.25◦)
SO2, SO4, POMd, and BC scaled GFEDv3.1 (Randerson et al. 2006) Monthly-mean varying (1997 – 2010; 0.3125◦ × 0.25◦)

QFED 2.4-r6 Daily (2010 – onwards; 0.3125◦ × 0.25◦)

Anthropogenic SO2 EDGARv4.2 (Energy + Non-Energy) Annually-varying (1980 – 2008; 0.1◦ × 0.1◦ )
(European Comission 2011)

Anthropogenic SO4, BC, & POMd AeroCom Phase II (HCA0 v1; Diehl et al. 2012) Annually-varying (1980 – 2006; 1◦ × 1◦)
International Ships (SO2) EDGARv4.1 (European Commission 2010) Annually-varying (1980 – 2005; 1◦ × 1◦)
International Ships (SO4, POMd, BC) AeroCom Phase II (HCA0 v1; Diehl et al. 2012) Annually-varying (1980 – 2007; 1◦ × 1◦)

and Eyring et al. (2005)
Aircraft (SO2) AeroCom Phase II (HCA0 v1; Diehl et al. 2012) Monthly-varying (1980 – 2006; 1◦ × 1.25◦ × 72-levels)
aPrecursor gasses include SO2, DMS, and MSA for sulfate aerosol and biogenic terpene for particulate organic matter (POM).
bNative resolution of emission inventories in latitude × longitude in degrees.
cFinal year of emissions is persisted; however, only degassing volcanic emissions are persisted after 2010.
dPOM = Particulate Organic Matter = 1.4 × OC as in Textor et al. (2006)

TABLE 2. MERRA-2 Aerosol Optical Depth (AOD) Observing System

Sensor Temporal Coverage Description

AVHRR NNRa 1980 – August 2002 PATMOS-x radiances over ocean only (PM orbit)
AERONETb,c Station dependent (1999 – October 2014) AOD from land station network
MISRc February 2000 – June 2014 AOD over bright land surfaces only (albedo > 0.15)
MODIS Terra NNRa March 2000 – onwards (NRTd ) Collection 5 ”Dark Target” land and ocean radiances (AM orbit)
MODIS Aqua NNRa August 2002 – onwards (NRTd ) Collection 5 ”Dark Target” land and ocean radiances (PM orbit)
aNNR refers to Neural Net Retrieval algorithm that computes AERONET-calibrated AOD from radiances.
bAERONET AOD is converted to 550 nm using an Angström-based interpolation and AOD reported at adjacent channels (500 and 675, typically).
cWe do not bias-correct AERONET or MISR AOD.
dMODIS data is available in Near Real Time (NRT)
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TABLE 3. Hourly AERONET Station Statistics∗ for MERRA-2 and M2REPLAY for 2000 – 2014 (1993 – 1999 in parenthesis).

Station Name Dominant Geographic Latitude Longitude Number of MERRA-2 M2REPLAY
Aerosol Type Region co-locations r RMSE r RMSE

Jabiru smoke Northern Australia -12.661 132.893 21917 0.82 0.44 0.68 0.46
Lake Argyle smoke Northern Australia -16.108 128.749 27894 0.81 0.71 0.80 0.48
Alta Floresta smoke Amazon Basin -9.871 -56.104 16942 (1650) 0.92 (0.77) 0.42 (0.72) 0.77 0.62
Bratts Lake smoke South-central Canada 50.28 -104.7 16825 (919) 0.85 (0.85) 0.51 (0.46) 0.68 0.52
Rimrock smoke Northwestern US 46.487 -116.992 15771 0.75 0.51 0.59 0.56
BSRN BAO Boulder smoke, polluted Great Plains US 40.045 -105.006 19545 0.82 0.44 0.70 0.47
Mongu smoke South-central Africa -15.254 23.151 19387 (4831) 0.93 (0.71) 0.32 (0.60) 0.81 0.55
Skukuza smoke Southeast Africa -24.992 31.587 17149 (1803) 0.89 (0.84) 0.34 (0.36) 0.75 0.45
Ilorin smoke, dust Sahel 8.32 4.34 15081 (2255) 0.92 (0.76) 0.27 (0.46) 0.71 0.51
Railroad Valley smoke, dust Southwest US 38.504 -115.962 23984 0.81 0.60 0.70 0.47
Sevilleta dust Southwest US 34.355 -106.885 22144 (8222) 0.84 (0.68) 0.49 (0.53) 0.72 0.46
Arica dust Northern Chile -18.472 -70.313 15906 (3446) 0.67 (0.47) 0.34 (0.48) 0.18 0.82
Saada dust Northwest African coast 31.626 -8.156 21290 0.84 0.43 0.82 0.58
Capo Verde dust Northwest African coast 16.733 -22.935 24324 (4445) 0.94 (0.84) 0.27 (0.42) 0.81 0.46
Dakar dust Sahel 14.394 -16.959 10158 0.92 0.26 0.74 0.49
Banizoumbou dust Sahel 13.541 2.665 35365 (3958) 0.80 (0.64) 0.46 (0.66) 0.65 0.58
IER Cinzana dust Sahel 13.278 -5.934 28947 0.82 0.40 0.68 0.51
Dalanzadgad dust Inner Mongolia 43.577 104.419 18701 (2692) 0.82 (0.75) 0.56 (0.64) 0.70 0.60
Solar Village dust Saudi Arabia 24.907 46.397 33837 (2704) 0.94 (0.92) 0.33 (0.28) 0.73 0.51
Sede Boker dust Israel 30.855 34.782 39027 (3225) 0.89 (0.80) 0.45 (0.42) 0.73 0.48
IMS-METU-ERDEMLI dust Turkey 36.565 34.255 16444 0.83 0.32 0.67 0.55
Nes Ziona dust Israel 31.922 34.789 23640 0.89 0.31 0.70 0.43
GSFC polluted Northeastern US 38.992 -76.84 24331 (6479) 0.94 (0.84) 0.50 (0.51) 0.79 0.52
MD Science Center polluted Northeastern US 39.283 -76.617 19285 (528) 0.89 (0.86) 0.52 (0.56) 0.72 0.56
Wallops polluted Northeastern US 37.942 -75.475 10652 (1924) 0.93 (0.90) 0.48 (0.46) 0.79 0.50
Mexico City polluted Central Mexico 19.334 -99.182 15830 (1045) 0.58 (0.54) 0.76 (0.86) 0.54 0.97
∗Statistics from natural log-transformed hourly AOD co-locations: r is Pearson’s correlation, RMSE is root mean square of the differences.
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TABLE 4. Table 3 Continued: Hourly AERONET Station Statistics∗ for MERRA-2 and M2REPLAY for 2000 – 2014 (1993 – 1999 in parenthe-
sis).

Station Name Dominant Geographic Latitude Longitude Number of MERRA-2 M2REPLAY
Aerosol Type Region co-locations r RMSE r RMSE

Lille polluted France 50.612 3.142 7421 0.85 0.34 0.59 0.46
Avignon polluted France 43.933 4.878 23913 (57) 0.81 (0.33) 0.39 (0.56) 0.72 0.44
Carpentras polluted France 44.083 5.058 21486 0.85 0.42 0.72 0.47
Ispra polluted Italy 45.803 8.627 13896 0.85 0.46 0.69 0.68
Rome Tor Vergata polluted Italy 41.84 12.647 2972 0.71 0.39 0.69 0.46
Venise polluted Italy 45.314 12.508 10495 (873) 0.84 (0.82) 0.51 (0.48) 0.63 0.59
Moldova polluted Black Sea coast 47 28.816 20092 (269) 0.87 (0.73) 0.35 (0.43) 0.67 0.45
Evora polluted, dust Spain 38.568 -7.912 10771 0.87 0.45 0.78 0.47
CEILAP-BA polluted, dust Argentina -34.567 -58.5 18102 (454) 0.73 (0.73) 0.52 (0.28) 0.50 0.51
Kanpur polluted, dust Central India 26.513 80.232 22029 0.85 0.28 0.43 0.80
XiangHe polluted, dust Northeastern China 39.977 116.381 17730 0.88 0.47 0.79 0.70
Beijing polluted, dust Northeastern China 39.754 116.962 22041 0.84 0.56 0.78 0.73
La Parguera clean marine, dust Caribbean 17.97 -67.045 19138 0.90 0.34 0.73 0.46
Cart Site clean continental Great Plains US 36.607 -97.486 20312 (2910) 0.89 (0.85) 0.39 (0.39) 0.79 0.39
Bondville clean continental Great Plains US 40.053 -88.372 15356 (3397) 0.89 (0.78) 0.45 (0.50) 0.73 0.49
Ascension Island clean marine South Atlantic -7.976 -14.415 10794 (992) 0.87 (0.49) 0.27 (0.56) 0.55 0.49
∗Statistics from natural log-transformed hourly AOD co-locations: r is Pearson’s correlation, RMSE is root mean square of the differences.
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TABLE 5. AOD and AAOD Comparisons Between Reanalyses, Models, and Observations

MERRA-2a,g MERRAeroa,g NAAPSb,h MACCc,i AeroCom Phase Id,g Yu et al. Yu et al.
Modelse Obs.f

Sulfate 0.040 ± 0.004 0.039 ± 0.004 – – 0.034 ± 0.011 – –
Black Carbon 0.006 ± 0.001 0.006 ± 0.001 – – 0.004 ± 0.002 – –
Organic Carbon 0.022 ± 0.006 0.025 ± 0.007 – – 0.019 ± 0.007 – –
Dust 0.030 ± 0.010 0.026 ±0.009 0.039 0.043 ± 0.014 0.032 ± 0.014 – –
Sea Salt 0.041 ± 0.002 0.034 ± 0.002 0.035 0.055 ± 0.016 0.030 ± 0.015 – –

Total AOD 0.140 ± 0.013 0.130 ± 0.015 0.137 0.180 ± 0.030 0.127 ± 0.025 0.129 ± 0.033 0.162 ± 0.023

Fine Modeg,h,i 0.068 ± 0.008 0.070 ± 0.011 0.064 0.082 0.063 ± 0.016 – –
Coarse Modej 0.072 ± 0.010 0.060 ± 0.009 0.073 0.098 0.061 ±0.024 – –

AAOD k 0.007 ± 0.001 0.009 ± 0.001 – 0.008 ± 0.002 0.005 ± 0.002 – –
aClimatological global area-weighted average ± standard deviation of monthly AOD for Y2003 – Y2010.
bNAAPS aerosol reanalysis calculated for Y2003 – Y2010 from annual average AOD (Lynch et al. 2016).
cMACC Y2003 – Y2010 global mean and uncertainty from Bellouin et al. (2013).
dAeroCom Phase I multi-model median and standard deviation from Kinne et al. (2006).
eMedian and standard deviation from 4 global models considered in Yu et al. (2006).
fMedian and standard deviation from MODIS Terra, MISR, and combinations of these satellite datasets with GOCART from Yu et al. (2006).
gFine mode AOD is the sum of sulfate, organic carbon, and black carbon AOD for MERRA-2, MERRAero, and AeroCom.
hNAAPS fine mode AOD is the sum of anthropogenic fine plus biomass burning AOD.
iMACC fine mode AOD is the sum of anthropogenic plus fine mode natural AOD.
jCoarse mode AOD is the sum of dust and sea salt.
kBellouin et al. (2013) use an algorithm to determine aerosol speciation and AAOD, not the native MACC AAOD.
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FIG. 1. Annual-mean aerosol emissions climatology (2000 – 2014) from MERRA-2. Emissions are shown for (a) dust, (b) sea salt, (c) particulate
organic matter (POM), (d) black carbon (BC), (e) primary sulfate (SO4) and sulfate from oxidation of sulfur dioxide gas (SO2), and (f) SO4 from
aqueous production. We define POM = 1.4 × OC, where OC is organic carbon (Textor et al. 2006). Emissions are from all sectors (fossil fuel,
biofuel, biomass burning, and biogenic, if applicable). The global, annual mean emissions are given on each panel.
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FIG. 2. Timeseries of carbonaceous aerosol emissions (BC + POM) in Tg month−1 from biomass burning sources averaged globally (grey
line; same in all panels) and over several major source regions (panels). For the regional emissions, red and green shading indicates the relative
contribution of BC and POM, respectively, to the total carbonaceous aerosol emissions; the total carbonaceous aerosol emissions are the sum of the
POM and BC contributions (i.e. stacked area plots are shown, but POM emissions far exceed BC emissions). Comparing the regional and global
timeseries, we show regional emissions events of global importance, such as the 1997 Indonesian fires.
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Global Number of Observations per Month by Sensor

FIG. 3. Total global monthly number of observations from AVHRR NNR, MODIS Terra over land (MODL NNR) and ocean (MODO NNR),
MODIS Aqua over land (MYDL NNR) and ocean (MYDO NNR), MISR over bright surfaces (deserts), and AERONET, where NNR is the bias-
corrected neural net retrieved AOD. Note the following: (1) AVHRR observations are only over the ocean. (2) Stronger cloud contamination
in the Southern Hemisphere relative to the Northern Hemisphere imparts a seasonal variation on the data volume for satellite sensors during the
EOS-period. (3) Data counts from MISR and AERONET are more clearly seen in the Supplementary Figures.

(a) (b)

FIG. 4. (a) AVHRR NNR AOD in July, 2008 where there is overlap with (b) MODIS Aqua NNR AOD to show the consistency applied to the
bias-corrected AOD by the NNR algorithm.
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(b) Forecast (F) and Observed (O) AOD in observation space (co-located)
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(a) Total, area-weighted average global AOD from MERRA-2 and MERRAero

Pinatubo Eruption

El Chichón Eruption

FIG. 5. (a) Global, area-weighted average monthly-mean 550 nm AOD from MERRA-2 (black line) and MERRAero (magenta) and contribu-
tions from various aerosol species (shading, MERRA-2 only). Carbonaceous aerosol AOD (green) is the sum of organic plus black carbon AOD.
Note that only the total AOD (thick black line) is directly constrained by the aerosol assimilation; aerosol speciation depends strongly on emission
and loss processes in the model. (b) Monthly-mean, co-located in time and space (pair-wise in observation space) comparison of the 3-hour model
forecast (F) and observations (O) for AVHRR NNR, MODIS Aqua land NNR (MYDL), and MODIS Aqua ocean NNR (MYDO). Here the lines
represent the observed AOD, and shading indicates the difference between F and O. (c) Monthly-mean statistics computed in log-transformed
observation space. Statistics comparing O and F are shown as dashed lines, and relationships between the observations and analysis (A) are shown
as solid lines for the same sensors as in (b). Supplementary figures show the statistics for the other sensors in the MERRA-2 aerosol observing
system (Table 2). The log-space errors (standard deviation) in AOD are related to linear errors according to Eq. 7. Note that we expect the monthly
mean statistics presented here to outperform statistics sampled at higher time frequencies.
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MERRA-2 Forecast AOD (MODIS Aqua, 2002-2015) MERRA-2 Analysis AOD (MODIS Aqua, 2002-2015)

MERRA-2 Forecast AOD (MODIS Terra + MISR, 2000-2015) MERRA-2 Analysis AOD (MODIS Terra + MISR, 2000-2015) M2REPLAY AOD (MODIS Terra + MISR Sampled, 2000-2015)

M2REPLAY AOD (MODIS Aqua Sampled, 2002-2015)

FIG. 6. Climatological annual-mean 3-hr forecast (left column), analysis (center column), and control run (M2REPLAY; right column) AOD
for MODIS Terra plus MISR over bright surfaces (top row) and MODIS Aqua (bottom row). Grey regions indicate no data, and the control run has
been sampled with the day-time orbit of the relevant sensors. Differences between the left and center columns indicate where the the analysis differs
from the forecast; in most places, the analysis AOD strongly resembles the forecast. Differences between the center and right column indicate the
overall impact of the analysis on simulated AOD since we compare to a control simulation without AOD assimilation.
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AVHRR NNR AOD (1980-2002) MERRA-2 Forecast AOD (AVHRR; 1980-2002) MERRA-2 Analysis AOD (AVHRR; 1980-2002)

AVHRR NNR AOD (1991-1992) MERRA-2 Forecast AOD (AVHRR; 1991-1992) MERRA-2 Analysis AOD (AVHRR; 1991-1992)

FIG. 7. Observed (O; left column), forecasted (F ; center column) and analyzed (A; right column) AOD in AVHRR observation-space for (top
row) 1980 – 2002 and (bottom row) 1991–1992 after the Pinatubo eruption. Grey regions indicate regions with no data. Note that the bias-corrected
observations in the left column are from the AVHRR NNR. Forecasted AOD after Pinatubo (bottom row, center column) is generally higher than
the observations and analyzed AOD fields, implying negative AOD increments during this time period. We also note possible cloud contamination
in the high latitude observations from AVHRR which may impact the analysis.
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RMSE:           0.39

Pearson’s r:  0.81
RMSE:           0.46

Pearson’s r:  0.92
RMSE:           0.30

Pearson’s r:  0.81
RMSE:           0.46

FIG. 8. Timeseries of AOD at three AERONET sites representing (a) polluted continental (GSFC, US East Coast), (b) biomass burning (Mongu,
central Africa), and (c) dust (Capo Verde, northwest African coast) dominated regions. Red bars are AERONET monthly mean AOD with error bars
indicating the standard deviation of the daily observed AOD. Black and blue lines are the rolling mean AOD from MERRA-2 and the control run
(M2REPLAY), respectively, with shading representing the rolling standard deviation. Correlation coefficients (r) are based on co-located hourly
data for the entire timeseries shown in each panel.



29

1982, N = 5, r = -0.25, b = -0.068

1983, N = 44, r = 0.89, b = 0.035
1984, N = 11, r = 0.91, b = 0.013
1985, N = 72, r = 0.26, b = -0.023
1986, N = 59, r = 0.62, b = 0.063
1987, N = 7, r = 0.11, b = 0.007
1988, N = 78, r = 0.78, b = 0.040
1989, N =108, r = 0.8, b = 0.035

1990, N = 25, r = 0.65, b = 0.002

1991, N = 57, r = 0.33 b = -0.136
1994, N = 19, r = 0.76, b = -0.007
1995, N = 67, r = 0.75, b = 0.041
1996, N = 25, r = 0.69, b = 0.0004

(a)

(b)

FIG. 9. Comparison of MERRA-2 and historical shipborne AOD observations. (a) Map showing the location of the ship cruises spanning the
period 1982 –1996. (b) Scatter plot of AOD spanning various years (indicated by different colors) and different cruises (indicated by marker shape).
X-axis error bars represent the assumed observed AOD error of 0.02, and y-axis error bars are the standard deviation of the MERRA-2 AOD used
to make the morning or afternoon averages (see text for sampling strategy).
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Pearson’s r: 0.93
Linear Regression: y = 0.77x + 0.36
Mean Bias (MAN - MERRA-2): 0.01
Standard Error: 0.002
N: 29,022
N. B.: Statistics computed in log(AOD + 0.01) space

(a) Marine Aerosol Network (MAN) Cruises
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Pearson’s r: 0.84
Linear Regression: y = 0.8x + 0.36
Mean Bias (MAN - M2REPLAY): 0.22
Standard Error: 0.003
N: 29,022
N. B.: Statistics computed in log(AOD + 0.01) space

(b)

(c)

FIG. 10. (a) Maritime Aerosol Network (MAN) cruises 2004 – 2015, color coded by year (see the MAN website for information on specific
cruises). (b) Joint PDF comparison of co-located MAN-observed and MERRA-2 AOD for the same period. (c) Same as (b) but for the M2REPLAY
control simulation without AOD assimilation. Note that statistics are calculated in natural log-transformed AOD space, the colorbar represents
probability density, and the x- and y-axes have been re-labeled in linear AOD space for clarity.
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SEAC4RS Flights

(a) DIAL/HSRL and MERRA-2 532 nm AOD (b) DIAL/HSRL and M2REPLAY 532 nm AOD

FIG. 11. Comparison of AOD observed during the NASA SEAC4RS campaign (August – September, 2013) over the southeastern and western
continental United States (see inset map). We compare 532 nm AOD observed by the DIAL/HSRL instrument aboard the NASA DC8 aircraft for
the entire campaign to (a) MERRA-2 and (b) M2REPLAY sampled along the flight paths and calculated over the same portion of the column as
reported by the instrument. Statistics are reported in natural log-transformed AOD space, the colorbar represents probability density, and the x- and
y-axes have been re-labeled in linear AOD space for clarity.

SEAC4RS Flights

4STAR
MERRA-2
M2REPLAY

FIG. 12. PDFs of AOD from the NASA SEAC4RS campaign (August – September, 2013) over the southeastern and western continental United
States (see inset map). We compare 550 nm AOD PDFs observed by the 4STAR instrument (red) aboard the NASA DC8 aircraft for the entire
campaign to MERRA-2 (black) and M2REPLAY (blue) sampled along the flight paths and calculated over the same portion of the column (only
above the aircraft) as reported by the instrument. Note the logarithmic spacing of the x-axis, and that the differences in modeled and observed AOD
for the lowest maximum is within the reported instrumental error (±0.02 for SEAC4RS).
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M2REPLAY (-2.47 ± 0.55 W m-2)
MERRA-2 (-3.09  ± 0.62 W m-2)
MERRAero (-3.11  ± 0.70 W m-2)

M2REPLAY (+4.28  ± 1.06 W m-2)
MERRA-2 (+5.26  ± 1.23 W m-2)
MERRAero (+5.53  ± 1.37 W m-2)

M2REPLAY (-6.74  ± 1.57 W m-2)
MERRA-2 (-8.35  ± 1.82 W m-2)
MERRAero (-8.64  ± 2.04 W m-2)

M2REPLAY (-3.20  ± 0.21 W m-2)
MERRA-2 (-3.65 ± 0.21 W m-2)
MERRAero (-3.44  ± 0.24 W m-2)

M2REPLAY (+1.47  ± 0.27 W m-2)
MERRA-2 (+2.09± 0.27 W m-2)

MERRAero (+2.14  ± 0.29 W m-2)

M2REPLAY (-4.67  ± 0.43 W m-2)
MERRA-2 (-5.74 ± 0.41 W m-2)
MERRAero (-5.58 ± 0.47 W m-2)

MACC
Yu_Obs
Yu_Model

FIG. 13. Timeseries of the global monthly mean clear-sky shortwave aerosol Direct Radiative Effect (DRE) in W m−2 over land (left column)
and ocean (right column). DRE is shown for (top row) top-of-the atmosphere (TOA), (middle row) atmosphere (ATM), and (bottom row) surface
(SFC) DRE where TOA = SFC + ATM. Full time series of DRE are shown for MERRA-2 (black line), M2REPLAY (cyan line), and MERRAero
(magenta line). Red shading is the Yu et al. (2006) multi-model range (median ± standard deviation), and grey shading is the satellite observation-
derived DRE range (median ± standard deviation) from the same study. Yellow shading is the estimated DRE (2003-2010 mean ± uncertainty)
derived from the MACC aerosol-reanalysis AOD (Bellouin et al. 2013). Note that the ATM forcing in Bellouin et al. (2013) is reported without
an uncertainty range, so the reported mean value is shown as a yellow line. The 2003 – 2010 mean and standard deviation DRE for MERRA-2,
M2REPLAY, and MERRAero are given on each panel. See Supplementary Table 3 for ocean- and land-averaged AOD, AAOD, and DRE efficiency.


